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Phase-separation transition in one-dimensional driven models
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A class of models of two-species driven diffusive systems which is shown to exhibit phase separation in
d51 dimensions is introduced. Unlike previously studied models exhibiting similar phenomena, here the
relative density of the two species is fluctuating within the macroscopic domain of the phase separtated state.
The nature of the phase transition from the homogeneous to the phase-separated state is discussed in view of
a recently introduced criterion for phase separation in one-dimensional driven systems.
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One-dimensional driven diffusive systems have attrac
considerable attention in recent years@1#. It has been dem-
onstrated in numerous studies that unlike systems in the
equilibrium, certain driven diffusive models with local nois
dynamics do exhibit phenomena such as phase transi
and phase separation. More recently a criterion for the e
tence of phase separation in a class of driven o
dimensional models has been introduced@2#. The criterion
relates the existence of phase separation in a given mod
the rate at which domains of various sizes exchange
ticles. Assuming that for a domain of lengthn this rate is
given by the steady-state currentJn which flows through it,
phase separation was suggested to exist only in the follow
cases: either the current vanishes in the thermodynamic li

Jn→0 as n→` ~CaseA!, ~1!

or the behavior of the current for large domains is of t
form

Jn;J`~11b/ns! ~CaseB!, ~2!

for eithers,1 andb.0 or for s51 andb.2.
The nature of the phase-separated states is rather diffe

in the two cases. In caseA the phase-separated states w
found to be of a rather simple nature, characterized by co
istence of pure domains, each consisting of a single typ
particles. Thus, the particle density in the interior of a d
main is nonfluctuating. Density fluctuations are limited
finite regions around the domain boundaries. Such ste
states were termedstrongly phase-separated. Moreover,
this case phase separation is expected to take place aany
density, no matter how small. On the other hand, in casB
the phase-separated state is expected to be fluctuating i
bulk of macroscopic domains, as is normally expected i
noisy system. It exists only at high enough densities, while
low densities the system is homogeneous. This phase
termedcondensedas the mechanism of the transition is sim
lar to that of the Bose-Einstein condensation.

One-dimensional models shown so far to phase sepa
are of typeA @3–5#, and thus they exhibit strong phase sep
ration at any density. In these models more than one spe
of particles are involved. In a recent study by Arndtet al.
~AHR! @4# an interesting two species driven model was
troduced. It was suggested, based on numerical simulati
1063-651X/2003/68~3!/035101~4!/$20.00 68 0351
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that the model exhibits a condensed phase-separated
whereby the particle densities fluctuate in the interior of
coexisting domains and not just at the domain boundaries
this state, a region with a high density of particles of bo
species coexists with a low-density region. Moreover,
model has nonvanishing currents even in the thermodyna
limit. As in equilibrium phase separation it has been su
gested that this state exists only at sufficiently high densit
However, a subsequent exact solution of the model@6# shows
that what numerically seems like a condensed state is in
homogeneous, with a very large but finite correlation leng
Further analysis of this model, in the light of the criterio
suggested in Ref.@2# shows that the currentsJn correspond-
ing to the domains in this model are given by the formB,
with s51 andb53/2 @2#. Therefore, according to the crite
rion, no phase separation takes place.

Another example of a model which was suggested to
hibit phase separation into a fluctuating macroscopically
homogeneous state is the two-lane model introduced by
rnisset al. @7#. While numerical studies of the model indica
that such a phase exists in the model, studies of the cur
Jn of finite domains suggests that it is of typeB with s51
and b.0.8 @2#, indicating, again, that no phase separati
exists in this model. Thus the question of whether a ph
separation of typeB exists remains an intriguing open que
tion.

In this paper we introduce a class of models which
demonstrated to be of typeB, with s51 andb.2. Accord-
ing to the criterion conjectured in Ref.@2# this class is ex-
pected to exhibit a phase transition to a phase-separatedcon-
densedstate. Thus at high densities these models exh
phase separation with nonvanishing currents in the ther
dynamic limit, and bulk fluctuations which are not restrict
to the vicinity of the domain boundaries. To the best of o
knowledge, this is the first example of a density driven tra
sition of this type in one-dimensional driven systems.

We now define this class of models in detail. We consid
a one-dimensional ring withL sites. Each sitei can be either
vacant (0) or occupied by a positive (1) or a negative
(2) particle ~or charge!. Positive particles are driven to th
right while negative particles are driven to the left. In add
tion to the hard-core repulsion, particles are subject to sh
range interactions. These interactions are ‘‘ferromagnet
in the sense that particles of the same kind attract each o
©2003 The American Physical Society01-1
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The dynamics conserves the number of particles of each
cies,N1 andN2 . The total density of particles in the syste
is r5(N11N2)/L. The model is defined by a random
sequential local dynamics, whereby a pair of neare
neighbor sites is selected at random, and the particles
exchanged with the following rates:

12→21 with rate 12DH,

10→01 with rate a,

02→20 with rate a. ~3!

HereDH is the difference in the ferromagnetic interactio
between the final and the initial configurations. We begin
considering a model with only nearest-neighbor interactio

H52e/4(
i

sisi 11 . ~4!

Heresi511(21) if site i is occupied by a1(2) particle
and si50 if site i is vacant. To ensure positive transitio
rates we take 0<e,1. The model is a generalization of th
Katz-Lebowitz-Spohn~KLS! model, introduced in Ref.@8#
and studied in detail in Ref.@9#, in which the lattice is fully
occupied by charges and no vacancies exist. In this pape
consider the case where the number of positive and nega
particles is equal,N15N2 .

We will demonstrate that for a certain range of the para
eters defining the dynamics, namely, fore.0.8 and suffi-
ciently largea ~to be discussed below!, a phase separatio
transition occurs as the densityr is increased above a critica
densityrc . In the phase-separated state a macroscopic
main, composed of positive and negative particles, coex
with a fluid phase, which consists of small domains of p
ticles ~of both charges! separated by vacancies. Typical co
figurations obtained during the time evolution of the mod
starting from a random initial configuration are given in F
1. This figure suggests that a coarsening process takes p
leading to a phase-separated state as described above.
ever, this by itself cannot be interpreted as a demonstra
of phase separation in these models. The reason is tha
behavior may very well be a result of a very large but fin

FIG. 1. Evolution of a random initial configuration of model~3!
with nearest-neighbor interactions, on a ring of 200 sites. Here
50.9, a52, and the particle density isr50.5. Positive particles
are colored black and negative particles are colored gray. One
dred snapshots of the system are shown at intervals of 100 M
Carlo sweeps.
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correlation length, as is the case in the AHR@4,6# and the
two-lane@7# models discussed above@10#. We thus apply the
criterion introduced in@2# in order to analyze the possibl
existence of phase separation in this model.

To this end we define a domain as an uninterrupted
quence of positive and negative particles bounded by vac
cies from both ends. The currentJn corresponding to such a
domain of lengthn may thus be determined by studying a
open chain, fully occupied by positive and negative particl
with entrance and exit ratesa. This is just the one-
dimensional KLS model on an open chain. Phase separa
is expected to take place only for sufficiently largea. We
considera such that the system is in its maximal curre
state, wherebyJ` assumes its maximum possible value a
is independent ofa.

To evaluateJn we first consider the KLS model on a rin
of n sites with no vacancies. We then extend these result
study the behavior of an open chain. Since we are intere
in the maximal current phase we consider equal numbe
positive and negative particlesn15n25n/2. It can be
shown, as was done for the noisy Burger’s equation@12,13#,
that under quite general conditions, to be discussed be
the currentJn takes the following form for largen:

Jn5J`S 12
lk

2J`

1

nD . ~5!

Here l5]2J` /]r1
2 is the second derivative of the curre

with respect to the density of positive particlesr1 in the
system. The compressibility analogk is defined by k
5 limn→`n21(^n1

2 &2^n1&2), calculated within a grand ca
nonical ensemble, as explained below. This can be dem
strated by considering the currentJn(n1) for charge densi-
ties close ton15n25n/2. ExpandingJn(n1) in powers of
Dn15n12n/2 one has

Jn~n1!5Jn~n/2!1Jn8Dn11 1
2 Jn9~Dn1!2, ~6!

where the derivativesJn8 andJn9 are taken with respect ton1

and evaluated atn/2. We average~6! over n1 with the
steady-state weights of a grand canonical ensemble. Th
done by introducing a chemical potentialm which ensures
that the average density satisfies^n1&5n/2. We find

^Jn~n1!&m5Jn~n/2!1 1
2 Jn9^~Dn1!2&m . ~7!

Noting that^Jn(n1)&m is J` in the n→` limit, and Jn(n/2)
is just Jn , Eq. ~5! is obtained. Here we made use of the fa
that finite-size corrections tôJn(n1)&m , resulting from the
next to leading eigenvalue of the transfer matrix of t
steady-state distribution, are exponentially small inn and
may thus be neglected. The result of Eq.~5! is rather general
and is independent of the exact form of the steady-state
ticle distribution. This is provided that the weights of th
microscopic configurations are local and thus the density
chemical potential ensembles are equivalent.

In fact, an alternative way to derive~5! is to consider the
correspondence between the driven lattice-gas models
the noisy Burger’s equation or the Kardar-Parisi-Zha

n-
te
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~KPZ! equation for interface growth in 111 dimensions
@11#. In these modelsJn corresponds to the growth velocit
of the interface. Equation~5! has been derived in Refs
@12,13#, wherel is the coefficient of the nonlinear term i
the KPZ equation. The equivalence of the two alternat
approaches relies on the fact that bothk andl are invariant
under renormalization transformations.

Result~5! can be used to evaluateJn for the KLS model.
It has been shown@8,10# that for a ring geometry the steady
state weight of a configuration$t i% is

P~$t i%!5e2bH, H52(
i 51

n

t it i 112m(
i 51

n

t i , ~8!

with t i561 for positive and negative charges, respective
e4b5(12e)/(11e), and m serves as a chemical potenti
which controls the density of, say, the positive particles. T
chemical potentialm vanishes for the casen15n2 . Using
~8! expressions fork(e) andJ`(e) of this model have been
obtained in Ref.@10#.

We now consider the KLS model in an open chain, wh
is the relevant geometry in applying the phase-separa
criterion. It has been argued@12# that the finite-size correc
tion to the current of an open chain is given by the cor
sponding correction in a ring geometry, up to a univer
multiplicative constantc which depends only on the bound
ary conditions. In the maximal current phase,c was found to
be 3/2. Thus the current of an open system is given by
~2! with s51 and

b~e!52c
l~e!k~e!

2J`~e!
. ~9!

Using the values ofJ` and k obtained in Ref.@10# and c
53/2 we find

b~e!5
3

2

~21e!y12e

2~y1e!
, y5A11e

12e
11. ~10!

In Fig. 2 the coefficientb(e) is plotted for 0<e,1. This
curve has been verified by direct numerical simulations
the KLS model on an open chain in the maximal curre
phase, demonstrating that the prefactorc indeed does no
depend one . Using~10! it is readily seen that fore.0.8 the
value ofb is larger than 2.

According to the criterion conjectured in Ref.@2# one ex-
pects phase separation to take place at high densitie

FIG. 2. The coefficientb(e), Eq. ~10!.
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model ~3! for e.0.8, as long asa is such that the KLS
model is in the maximal current phase. Thiscondensed
phase-separated state belongs to caseB of the criterion. We
have carried out extensive numerical simulations of the
namics of the model for various values ofe. We find that for
e&0.4 no phase separation is observed. However, foe
.0.4 simulation of systems of sizes up toL5106 show that
the system evolves towards what seems to be a ph
separated state at sufficiently large densities. We argue th
genuine phase separation takes place only fore.0.8. On the
other hand, the seemingly phase separation found in sim
tions for 0.4&e,0.8, is only a result of large but finite cor
relation lengths, as was found in the AHR and in the tw
lane models. As pointed out in Ref.@10# such a behavior is
related to corrections of order 1/n2 and higher in the form of
the current@Eq. ~2!#. These corrections were shown to lead
a crossover with a very sharp increase in the correla
length, which could be erroneously interpreted as a genu
phase transition in numerical studies of finite systems.

We now discuss the phase transition leading to the ph
separated state. According to Ref.@2# the domain size distri-
bution just below the transition takes the form

P~n!;
1

nb
e2n/j, ~11!

wherej is the correlation length, which diverges at the tra
sition. The particle density in the system is related toj by
r/(12r)5(nP(n)/(P(n). The critical densityrc is given
by this expression withj→`. Note that with this form of the
distribution function,rc is 1 in the limit b↘2, and is a
decreasing function ofb. It is straightforward to show@14#
that the divergence of the correlation length at the criti
density is given by

j;H ur2rcu21/(b22), 2,b,3,

ur2rcu21, b.3.
~12!

It is worthwhile noting that while]j21/]r is continuous at
the transition for 2,b,3, it exhibits a discontinuity forb
.3. The transition may thus be considered continuous
2,b,3 and first order forb.3.

In the model defined aboveb is found to satisfy 3/2<b
,9/4. It is natural to ask whether larger values ofb could be
reached by increasing the range of the interactions. To
swer this question we have extended model~4! to include
next-nearest-neighbor interactions,

H52e/4(
i

sisi 112d/4(
i

sisi 12 . ~13!

We have calculated the value ofb as a function ofd by
Monte Carlo simulations. This is done by measuring the c
rent Jn in an open system of sizen, which is fully occupied
by positive and negative particles. At the boundaries,
coupling to the rest of the system is modeled by injection
positive ~negative! particles with ratesa at the left ~right!.
Simulating systems of size up to 1024 enables us to fit
measured values ofJn to the form ~2! with s51 and to
1-3
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extractb. In Fig. 3 we plotb as a function ofd, for e50 and
for e50.5. We find that by extending the range of the int
actions one can increaseb to values even larger than 3
where the phase-separation transition is expected to be
order.

The models introduced in this work exhibit a classB
phase separation transition according to the recently con

FIG. 3. The coefficientb(d), as calculated from Monte Carlo
simulations of domains of sizes up to 1024.
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tured criterion@2#. The models exhibit a homogeneous sta
at low densities and a phase transition into a phase-sepa
state at a critical density. In these models the macrosco
domain of the condensed phase is composed of a fluctua
mixture of the two types of particles in the systems. Howe
the dynamics of the models is such that vacancies do
enter into the condensed phase and they reside only in
fluid phase.

While the validity of the criterion was proved for th
AHR model, its general validity was conjectured based
some plausible assumptions on the behavior of the coar
ing domains@2#. It would be of interest to analyze the clas
of models introduced in the present study by other analyt
means, in order to verify the validity of the criterion.
would also be of interest to apply the dynamical picture d
cussed in this work to jamming transitions occurring in tra
fic models@15#.
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