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A class of models of two-species driven diffusive systems which is shown to exhibit phase separation in
d=1 dimensions is introduced. Unlike previously studied models exhibiting similar phenomena, here the
relative density of the two species is fluctuating within the macroscopic domain of the phase separtated state.
The nature of the phase transition from the homogeneous to the phase-separated state is discussed in view of
a recently introduced criterion for phase separation in one-dimensional driven systems.
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One-dimensional driven diffusive systems have attractedhat the model exhibits a condensed phase-separated state,
considerable attention in recent yegtd. It has been dem- whereby the particle densities fluctuate in the interior of the
onstrated in numerous studies that unlike systems in thermabexisting domains and not just at the domain boundaries. In
equilibrium, certain driven diffusive models with local noisy this state, a region with a high density of particles of both
dynamics do exhibit phenomena such as phase transitiorpecies coexists with a low-density region. Moreover, the
and phase separation. More recently a criterion for the exismodel has nonvanishing currents even in the thermodynamic
tence of phase separation in a class of driven onelimit. As in equilibrium phase separation it has been sug-
dimensional models has been introdu¢@dl The criterion  gested that this state exists only at sufficiently high densities.
relates the existence of phase separation in a given model t9owever, a subsequent exact solution of the mpélethows
the rate at which domains of various sizes exchange pathat what numerically seems like a condensed state is in fact
ticles. Assuming that for a domain of lengththis rate is  homogeneous, with a very large but finite correlation length.
given by the steady-state currehf which flows through it,  Further analysis of this model, in the light of the criterion
phase separation was suggested to exist only in the followinguggested in Ref2] shows that the currentk, correspond-
cases: either the current vanishes in the thermodynamic limiing to the domains in this model are given by the foBn
with =1 andb=3/2[2]. Therefore, according to the crite-
rion, no phase separation takes place.

Another example of a model which was suggested to ex-
hibit phase separation into a fluctuating macroscopically in-

J,—0 as n—x (Cased), (1)

or the behavior of the current for large domains is of the,

form homogeneous state is the two-lane model introduced by Ko-
Jo~J.(1+b/n%) (CaseB), (2)  risset al.[7]. While numerical studies of the model indicate
that such a phase exists in the model, studies of the current
for eitheroc<1 andb>0 or for c=1 andb>2. J, of finite domains suggests that it is of tygewith o=1

The nature of the phase-separated states is rather differend b=0.8 [2], indicating, again, that no phase separation
in the two cases. In cask the phase-separated states wereexists in this model. Thus the question of whether a phase
found to be of a rather simple nature, characterized by coexseparation of typ@ exists remains an intriguing open ques-
istence of pure domains, each consisting of a single type dfon.
particles. Thus, the particle density in the interior of a do- In this paper we introduce a class of models which are
main is nonfluctuating. Density fluctuations are limited todemonstrated to be of tyd® with =1 andb>2. Accord-
finite regions around the domain boundaries. Such steadyg to the criterion conjectured in Rdf2] this class is ex-
states were termedtrongly phase-separated. Moreover, in pected to exhibit a phase transition to a phase-sepacated
this case phase separation is expected to take plasayat densedstate. Thus at high densities these models exhibit
density, no matter how small. On the other hand, in dase phase separation with nonvanishing currents in the thermo-
the phase-separated state is expected to be fluctuating in tignamic limit, and bulk fluctuations which are not restricted
bulk of macroscopic domains, as is normally expected in do the vicinity of the domain boundaries. To the best of our
noisy system. It exists only at high enough densities, while aknowledge, this is the first example of a density driven tran-
low densities the system is homogeneous. This phase waition of this type in one-dimensional driven systems.
termedcondenseds the mechanism of the transition is simi-  We now define this class of models in detail. We consider
lar to that of the Bose-Einstein condensation. a one-dimensional ring with sites. Each siteé can be either

One-dimensional models shown so far to phase separat@cant (0) or occupied by a positiver§ or a negative
are of typeA [3-5], and thus they exhibit strong phase sepa-(—) particle (or chargg. Positive particles are driven to the
ration at any density. In these models more than one specieght while negative particles are driven to the left. In addi-
of particles are involved. In a recent study by Arredtal.  tion to the hard-core repulsion, particles are subject to short-
(AHR) [4] an interesting two species driven model was in-range interactions. These interactions are “ferromagnetic,”
troduced. It was suggested, based on numerical simulations) the sense that particles of the same kind attract each other.
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correlation length, as is the case in the AR6] and the
two-lane[ 7] models discussed abo{&0]. We thus apply the
criterion introduced i 2] in order to analyze the possible
existence of phase separation in this model.

To this end we define a domain as an uninterrupted se-
quence of positive and negative particles bounded by vacan-
cies from both ends. The curred corresponding to such a
RERIE domain of lengthn may thus be determined by studying an

i open chain, fully occupied by positive and negative particles,
with entrance and exit rates. This is just the one-

FIG. 1. Evolution of a random initial configuration of mod8) dimensional KLS model on an open chain. Phase separation
with nearest-neighbor intgractions,_ on a ring of 2_0_0 sites._ Here g expected to take place only for sufficiently large We
=0.9, a=2, and the particle density s=0.5. Positive particles ., qjgerq such that the system is in its maximal current
are colored black and negative particles are colored gray. One hu%'tate wherebyl,, assumes its maximum possible value and
dred snapshots of the system are shown at intervals of 100 Monti% independent %ﬁ_
Carlo sweeps. To evaluatel,, we first consider the KLS model on a ring

The dynamics conserves the number of particles of each sp8lc n sites with no vacancies. We th_en gxtend these .results to
study the behavior of an open chain. Since we are interested

cies,N, andN_. The total density of particles in the system : . .
is p=(N,+N_)/L. The model is defined by a random- in thg maximal current phas_,e we consider equal number of
sequential local dynamics, whereby a pair of nearestPOSitive and negative particles, =n_=n/2. It can be

neighbor sites is selected at random, and the particles afémtwn,das wa_st done forlthe ng;sy Buzgel;’s zquam?t,) |
exchanged with the following rates: at under quite general conditions, to be discussed below,

the current], takes the following form for large:

time

+———+ withrate 1-AH,

J=J.1 el 5
+0—0+ withrate «, noe 2J.n) ®)
0———0 withrate «. (3) Here)\=(92Jm/&p2+ is the second derivative of the current

with respect to the density of positive particlps in the
Here AH is the difference in the ferromagnetic interactionssystem. The compressibility analog is defined by «
between the final and the initial Configurations. We begin by:|imnﬁwn_1(<ni>_<n+>2), calculated within a grand ca-
considering a model with only nearest-neighbor interactionsponical ensemble, as explained below. This can be demon-
strated by considering the currehqi(n,) for charge densi-
H=— 6/42 SiSi1. (4) ties close tan, =n_=n/2. Expandingl,(n.) in powers of
i An,=n,—n/2 one has

Heres,=+1(—1) if sitei is occupied by at+ (—) particle Jn(n)=J,(n/2)+J/An, + %Jﬁ(Am){ (6)

and s;=0 if site i is vacant. To ensure positive transition

rates we take & e<1. The model is a generalization of the where the derivatives;, andJ!, are taken with respect to,
Katz-Lebowitz-Spohn(KLS) model, introduced in Refl8]  and evaluated an/2. We average(6) over n. with the

and studied in detail in Ref9], in which the lattice is fully  steady-state weights of a grand canonical ensemble. This is
occupied by charges and no vacancies exist. In this paper Weone by introducing a chemical potential which ensures

consider the case where the number of positive and negati@at the average density satisfigs, )=n/2. We find
particles is equalN  =N_ .

We will demonstrate that for a certain range of the param- (In(n3)),=3n(nf2)+337((ANL)?) . (7)
eters defining the dynamics, namely, fer-0.8 and suffi-
ciently largea (to be discussed belgwa phase separation Noting that(J,(n.)),, is J.. in the n—o limit, and J,(n/2)
transition occurs as the densjiyis increased above a critical is justJ,,, Eq.(5) is obtained. Here we made use of the fact
densityp.. In the phase-separated state a macroscopic dahat finite-size corrections t@J,(n,)),, resulting from the
main, composed of positive and negative particles, coexisteext to leading eigenvalue of the transfer matrix of the
with a fluid phase, which consists of small domains of par-steady-state distribution, are exponentially smallnirand
ticles (of both chargesseparated by vacancies. Typical con- may thus be neglected. The result of Eg).is rather general
figurations obtained during the time evolution of the modeland is independent of the exact form of the steady-state par-
starting from a random initial configuration are given in Fig. ticle distribution. This is provided that the weights of the
1. This figure suggests that a coarsening process takes placericroscopic configurations are local and thus the density and
leading to a phase-separated state as described above. Hasttemical potential ensembles are equivalent.
ever, this by itself cannot be interpreted as a demonstration In fact, an alternative way to deri®) is to consider the
of phase separation in these models. The reason is that thierrespondence between the driven lattice-gas models and
behavior may very well be a result of a very large but finitethe noisy Burger's equation or the Kardar-Parisi-Zhang
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2.2] model (3) for €>0.8, as long asy is such that the KLS
21] / model is in the maximal current phase. Thiendensed
20 phase-separated state belongs to &sé the criterion. We
19] have carried out extensive numerical simulations of the dy-
b 18] namics of the model for various values afWe find that for
17] €<0.4 no phase separation is observed. However, efor
16] >0.4 simulation of systems of sizes uplte=10° show that
1': the system evolves towards what seems to be a phase-
0.0 02 04 0.6 08 1.0 separated state at sufficiently large densities. We argue that a
€ genuine phase separation takes place onlygfe0.8. On the
FIG. 2. The coefficienb(e), Eq. (10). other hand, the seemingly phase separation found in simula-

tions for 0.4<€<0.8, is only a result of large but finite cor-
(KPZ2) equation for interface growth in 41 dimensions relation lengths, as was found in the AHR and in the two-
[11]. In these models,, corresponds to the growth velocity lane models. As pointed out in Refl0] such a behavior is
of the interface. Equatior{5) has been derived in Refs. related to corrections of orderri/ and higher in the form of
[12,13, where\ is the coefficient of the nonlinear term in the currenfEq. (2)]. These corrections were shown to lead to
the KPZ equation. The equivalence of the two alternatived crossover with a very sharp increase in the correlation
approaches relies on the fact that batland\ are invariant length, which could be erroneously interpreted as a genuine

under renormalization transformations. phase transition in numerical studies of finite systems.
Result(5) can be used to evaluafk for the KLS model. We now discuss the phase transition leading to the phase-
It has been ShOW[B,lO] that for a ring geometry the Steady- separated state. According to Rm the domain size distri-
state weight of a configuratiofr,} is bution just below the transition takes the form
n n 1
Pr=e " H=-3 nra-pn2 5, (@) P~ e ", (1)
=1 =1

with 7,=*1 for positive and negative charges, respectivelywhere¢ is the correlation length, which diverges at the tran-
e*#=(1—¢€)/(1+¢€), and u serves as a chemical potential sition. The particle density in the system is related¢tby
which controls the density of, say, the positive particles. Thep/(1—p)==nP(n)/=P(n). The critical densityp, is given
chemical potentiaj vanishes for the case, =n_. Using by this expression witl§— . Note that with this form of the
(8) expressions fok(e) andJ..(e) of this model have been distribution function,p. is 1 in the limit b\ 2, and is a
obtained in Ref[10]. decreasing function db. It is straightforward to show14]

We now consider the KLS model in an open chain, whichthat the divergence of the correlation length at the critical
is the relevant geometry in applying the phase-separatiodensity is given by
criterion. It has been argudd?] that the finite-size correc- 1p-2)
tion to the current of an open chain is given by the corre- _ lp=pel , 2<b<s,
sponding correction in a ring geometry, up to a universal lp—pel 1, b>3.
multiplicative constant which depends only on the bound-
ary conditions. In the maximal current phasayas found to It is worthwhile noting that while?é =Y/ dp is continuous at
be 3/2. Thus the current of an open system is given by Edhe transition for 22b<3, it exhibits a discontinuity fob

(12

(2) with =1 and >3. The transition may thus be considered continuous for
2<b<3 and first order fob>3.
b(e)= _C)\(G)K(f) © In the model defined abovie is found to satisfy 3/Zb
2J..(e) <9/4. It is natural to ask whether larger valuesdafould be

reached by increasing the range of the interactions. To an-
Using the values ofl,. and x obtained in Ref[10] andc  swer this question we have extended mo@glto include
=3/2 we find next-nearest-neighbor interactions,

3 (2+e€)v+2e 1+e€
b(e)ZEW’ v=\ 1L (10 H:_6/42i Sisi+1_5/42i SiSi+2- (13

In Fig. 2 the coefficienb(e) is plotted for O<e<1. This We have calculated the value bfas a function ofé by
curve has been verified by direct numerical simulations oMonte Carlo simulations. This is done by measuring the cur-
the KLS model on an open chain in the maximal currentrentJ, in an open system of sizg which is fully occupied
phase, demonstrating that the prefactoindeed does not by positive and negative particles. At the boundaries, the
depend ore . Using(10) it is readily seen that foe>>0.8 the  coupling to the rest of the system is modeled by injection of
value ofb is larger than 2. positive (negative particles with ratesy at the left(right).
According to the criterion conjectured in R¢2] one ex-  Simulating systems of size up to 1024 enables us to fit the
pects phase separation to take place at high densities measured values adf, to the form (2) with =1 and to
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34 , ; ; tured criterion[2]. The models exhibit a homogeneous state
3.2} x €=0 at low densities and a phase transition into a phase-separated
3l O e=05 state at a critical density. In these models the macroscopic
domain of the condensed phase is composed of a fluctuating
28 mixture of the two types of particles in the systems. However
b 28 ] the dynamics of the models is such that vacancies do not
2.4} : enter into the condensed phase and they reside only in the
20l ] fluid phase.
A While the validity of the criterion was proved for the
AHR model, its general validity was conjectured based on
1.8 some plausible assumptions on the behavior of the coarsen-
165 03 02 05 03 ] ing domaing 2]. It would be of interest to analyze the class

F of models introduced in the present study by other analytical
means, in order to verify the validity of the criterion. It
would also be of interest to apply the dynamical picture dis-
cussed in this work to jamming transitions occurring in traf-
fic models[15].

FIG. 3. The coefficienb(5), as calculated from Monte Carlo
simulations of domains of sizes up to 1024.

extractb. In Fig. 3 we plotb as a function of5, for e=0 and

for e=0.5. We find that by extending the range of the inter-

actions one can increade to values even larger than 3, We thank L. Gray, D. Kandel, J. L. Lebowitz, and G. Ziv
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